Accretion of Low Angular Momentum Material onto Black Holes: Two-dimensional Magnetohydrodynamic Case

نویسنده

  • Mitchell C. Begelman
چکیده

We report on the first phase of our study of slightly rotating accretion flows onto black holes. We consider inviscid accretion flows with a spherically symmetric density distribution at the outer boundary, but with spherical symmetry broken by the introduction of a small, latitude-dependent angular momentum. We study accretion flows by means of numerical 2D, axisymmetric, hydrodynamical simulations. Our main result is that the properties of the accretion flow do not depend as much on the outer boundary conditions (i.e., the amount as well as distribution of the angular momentum) as on the geometry of the non-accreting matter. The material that has too much angular momentum to be accreted forms a thick torus near the equator. Consequently, the geometry of the polar region, where material is accreted (the funnel), and the mass accretion rate through it are constrained by the size and shape of the torus. Our results show one way in which the mass accretion rate of slightly rotating gas can be significantly reduced compared to the accretion of non-rotating gas (i.e., the Bondi rate), and set the stage for calculations that will take into account the transport of angular momentum and energy. Subject headings: accretion – hydrodynamics – black hole physics – outflows – galaxies: active – methods: numerical

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : a st ro - p h / 03 03 09 3 v 1 4 M ar 2 00 3 Accretion of low angular momentum material onto black holes : 2 D magnetohydrodynamical case

We report on the second phase of our study of slightly rotating accretion flows onto black holes. We consider magnetohydrodynamical (MHD) accretion flows with a spherically symmetric density distribution at the outer boundary, but with spherical symmetry broken by the introduction of a small, latitude-dependent angular momentum and a weak radial magnetic field. We study accretion flows by means...

متن کامل

Three-dimensional Simulations of Magnetized Thin Accretion Disks around Black Holes: Stress in the Plunging Region

We describe three-dimensional general relativistic magnetohydrodynamic simulations of a geometrically thin accretion disk around a non-spinning black hole. The disk has a thickness h/r ∼ 0.05−0.1 over the radius range (2−20)GM/c2. In steady state, the specific angular momentum profile of the inflowing magnetized gas deviates by less than 2% from that of the standard thin disk model of Novikov &...

متن کامل

Accretion Modes in Collapsars - Prospects for Grb Production

We explore low angular momentum accretion flows onto black holes formed after the collapse of massive stellar cores. In particular, we consider the state of the gas falling quasi-spherically onto stellar-mass black holes in the hypercritical regime, where the accretion rates are in the range 10−3 . Ṁ . 0.5M⊙ s−1 and neutrinos dominate the cooling. Previous studies have assumed that in order to ...

متن کامل

Accretion onto Intermediate-mass Black Holes in Dense Protogalactic Clouds

We present the first results from two-dimensional simulations of radiatively-efficient accretion of metal-free gas onto intermediate-mass black holes. We fix the shape of the spectral energy distribution of the radiation produced near the event horizon and study the structure of the irradiated low-angular-momentum accretion flow over three orders of magnitude in radius from the black hole, 1014...

متن کامل

Time Variability of Low Angular Momentum Flows Accreting onto Black Holes: A Natural Mechanism For Radiation Flaring

We present results from our magnetohydrodynamical simulations of accretion flows onto black holes. Our main focus is the interplay between inflows and related outflows. We consider applications of such flows to the Galatic center and low luminosity active galactic nuclei.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003